Date Published: 23 January 2006

Structure of HIV virus revealed by Oxford University

Health News from Oxford, England (UK).
Click for more news from or about Oxford.
See also Books about Oxford, England.

HIV, the virus which leads to AIDS and which affects 40 million people across the world, has been seen in 3D detail for the first time by Oxford scientists and their colleagues in Heidelberg and Munich.

The virus, which is around 60 times smaller than a red blood cell, is far too small for ordinary light microscopes. Electron microscopes and X-rays can 'see' it, but often give unsatisfactory images because the virus varies so much in size and shape. One of the unique features of HIV is this size variation, which is in contrast to the uniformity of most viruses.

Professor Stephen Fuller from Oxford's Wellcome Trust Centre for Human Genetics and his colleagues used a technique called cryo-electron tomography to look in detail at the morphology of the virus. The technique has been used to see the virus before, but this painstaking attempt revealed the three-dimensional structure for the first time. The team took images of the individual viruses from hundreds of different angles. These images were then combined using a computer, giving an unprecedented three-dimensional view of the deadly agent, which has been published in the journal Structure.

An HIV particle, like any virus, is not a cell but rather is strands of genetic code wrapped in protein. Viruses invade living cells and take them over by usurping the cell's genetic code with the virus's genetic code (which contains the instruction 'replicate').

HIV is a particularly successful virus, and the size and shape variability which makes it so difficult to image is assumed to play a role in its success. A puzzling question was how HIV, unlike other viruses, managed to be so varied without losing its crucial structure. The new image of the particle gave new insights into that question. Instead of the central region of the virus organizing its growth, as in most viruses, the virus membrane and the core interact so that the core stops growing only when it reaches the membrane's limit. The inner surface of the viral membrane 'directs' growth, which keeps the important parts of the structure consistent whilst allowing size variation.

" This novel mechanism accommodates significant flexibility in lattice growth while ensuring the closure of cores of variable size and shape", said Professor Fuller.

" Identifying how the virus grows will allow us to address the formation of this important pathogen and understand how it accommodates its variability. This could inform the development of more effective therapeutic approaches."

The microscopy was performed at the Wellcome Trust Centre for Human Genetics in Oxford and The Max Planck Institut für Biochemie in Martinsried, and was supported by the Wellcome Trust.

Source: : Oxford University, England (UK)
http://www.ox.ac.uk - specific page no-longer available.

Also in the News:

HIV diagnoses falling, but still cause for concern (UK) - 3 Oct '17

No significant benefit from routine use of antibiotics for malnourished children - 8 Feb '16

HIV associated with Salmonella epidemic in sub Saharan Africa - 11 Oct '12

Medical sharps injuries and risks to medical personnel - 9 Aug '12

Improvements for women & children in Afghanistan - 27 Jun '12

Could targeting the skin help prevent the spread of HIV? - 11 Jul '11

HIV Vaccine Awareness Day - 11 May '11

Drug-resistant strains of Aspergillus fungi - 5 May '11

Although care has been taken when compiling this page, the information contained might not be completely up to date. Accuracy cannot be guaranteed. This material is copyright. See terms of use.

IvyRose Holistic 2003-2019.