Date Published: 11 August 2005

Demonstration of x-ray phase-based imaging - the beginning of a new phase in medical imaging

In a development that could contribute to a revolutionary new kind of medical imaging for clinics and hospitals, researchers have demonstrated a practical x-ray device that provides 2- and 3-dimensional images of soft biological tissue with detail that is usually difficult to discern with conventional x-ray imaging.

This research was conducted by researchers at the Paul Scherrer Institut in Switzerland and the European Synchrotron Radiation Facility in France. It may help to make available new medical imaging techniques with important applications such as the detection of cancerous breast tissue directly - rather than the hard-tissue calcifications that are produced in later stages of the disease.

X-rays excel at imaging hard tissue - such as teeth - as well as the differences between hard and soft tissue - such as bones and skin in the human hand. However, x-rays are not good at distinguishing between different types of soft tissue, such as normal and cancerous cells in the breast.

While x-ray mammography detects the hard ?calcifications”that are the byproducts of breast tumors, researchers wish to be able to detect the tumor cells directly?potentially leading to better and earlier diagnosis of breast cancer.

This is just one of the potential biomedical applications of an emerging technique called phase-sensitive x-ray imaging. 'Normal' x-ray pictures, such as those at taken by dentists, are ?absorption-based”images. They rely upon the fact that the teeth absorb many more x-rays than the rest of the mouth. However, soft tissue does not absorb x-rays very well, making absorption imaging unsuited to the task of capturing the details of soft structures in such organs as the breast and kidney.

Optics researchers have long known that x-rays have the potential to make detailed images of soft biological tissue through a technique known as ?phase”imaging.

X-rays are a form of electromagnetic wave, just like light. They can be described in terms of waves with series of peaks and valleys - just like a like a water wave.

When an x-ray encounters the boundary of two types of material, such as normal tissue and cancerous tissue, it will undergo a ?phase shift?. This means that the peak of the wave will move backward by a small amount relative to the position where it would be if there were no sample in the beam (different type of material). By measuring the phase shifts as x-rays pass through the boundaries of different kinds of tissue, researchers can obtain detailed pictures of soft biological tissue.

In a demonstration that could bring this approach much closer to medical applications, a new phase-based imaging device has been developed that combines three desirable attributes :-

  • Compact size (only a few centimeters in length),
  • Large field of view (up to 20x20 cm2), and
  • The ability to use x-rays over a broad spectrum of energies.

In non-physics terms, these attributes are important for flexibility of use of the device.

How does it work ?

The design of this device uses a pair of gratings - each of which consists of a thin slab of material with narrow, closely spaced parallel lines etched deeply into them, like little slits carved into the inch marks of a ruler.

A stream of x-rays passes through the object to be imaged and undergoes a series of phase shifts, which distorts the stream in a precise way. The distorted x-ray stream then passes through the first grating and is diffracted. That is, the grating slices the x-ray stream into multiple waves that combine and interfere to produce a series of fringes (bright and dark stripes). The second grating extracts from this pattern precise information about the details of the object being studied.

Using this technique, the researchers imaged a small spider, revealing internal structures that would be difficult to image with any other method. The researchers believe that the modest requirements of this technique, both in terms of x-ray source, laboratory space, and materials, may make phase-based imaging practical for a wide range of biological and medical applications.

Source: Optical Society of America

Also in the News:

Saffron adopted through ABC's Adopt-an-Herb Program - 7 Apr '20

World Health Day 2020: Support Nurses and Midwives - 7 Apr '20

How to get along when staying at home - 31 Mar '20

Handwashing campaign targets a billion people worldwide - 28 Mar '20

New images of how white blood cells attack infections - 24 Jul '13

Research to improve MRI scans - 15 Dec '11

MR Spectroscopy Significantly Reduces Need for Breast Biopsy - 31 May '06

New MRI Technique Shows Emphysema in Asymptomatic Smokers - 31 May '06

Ask Archangel Chamuel to send you a pink sphere of emotional healing energy to release stress and tension.

Although care has been taken when compiling this page, the information contained might not be completely up to date. Accuracy cannot be guaranteed. This material is copyright. See terms of use.

IvyRose Holistic 2003-2020.