Date Published: 23 October 2013

Funding for novel robots to assist people with disabilities

Health News from the United States of America (USA)

Health News from the United States of America (USA)

Modern scientific developments have shown that robots can help to improve mobility for people who are visually and/or physically impaired, and can improve treatment for atrial fibrillation.

Three projects involving work in each of these areas have been awarded funding by the United States' National Institutes of Health (NIH) to develop new advanced robots to work cooperatively with people and to adapt to changing environments in order to improve human capabilities and enhance the effectiveness of medical procedures. The funding that has recently been made available for for these projects is approx. $2.4 million in total, over the next five years (subject to the availability of funds).

The awarding of these research funds marks the second year of NIH's involvement in the National Robotics Initiative (NRI), a commitment among multiple federal agencies to support the development of a new generation of robots to operate cooperatively with people, known as co-robots.

"These projects have the potential to transform common medical aids into sophisticated robotic devices that enhance mobility for individuals with visual and physical impairments in ways only dreamed of before," said NIH Director Francis S. Collins, M.D., Ph.D.
" In addition, as we continue to rely on robots to carry out complex medical procedures, it will become increasingly important for these robots to be able to sense and react to changing and unpredictable environments within the body. By supporting projects that develop these capabilities, we hope to increase the accuracy and safety of current and future medical robots."

The NIH is currently working with the NRI, the National Science Foundation, the National Aeronautics and Space Administration, and the U.S. Department of Agriculture, and has funded the following 3 projects that will help to develop co-robots that can assist researchers, patients, and clinicians.

  1. A Co-Robotic Navigation Aid for the Visually Impaired:
    The goal of this project is to develop a co-robotic cane for the visually impaired (that is, for people whose quality of eyesight is less than that considered 'normal') which has enhanced navigation capabilities and that can relay critical information about the environment to its user. Using computer vision, the proposed cane will be able to recognize indoor structures such as stairways and doors, as well as detect potential obstacles. Using an intuitive human-device interaction mechanism, the cane will then convey the appropriate travel direction to the user. In addition to increasing mobility for the visually impaired and thus quality of life, methods developed in the creation of this technology could lead to general improvements in the autonomy of small robots and portable robotics that have many applications in military surveillance, law enforcement, and search and rescue efforts. Cang Ye, Ph.D., University of Arkansas at Little Rock (co-funded by the National Institute of Biomedical Imaging and Bioengineering [NIBIB] and the National Eye Institute).

  2. MRI-Guided Co-Robotic Active Catheter:
    Atrial fibrillation is an irregular heartbeat that can increase the risk of stroke and heart disease. By purposefully ablating (destroying) specific areas of the heart in a controlled way, the propagation of irregular heart activity can be prevented. This is generally achieved by threading a catheter with an electrode at its tip through a vein in the groin until it reaches the patient's heart. However, the constant movement of the heart as well as unpredictable changes in blood flow can make it difficult to maintain consistent contact with the heart during the ablation procedure, occasionally resulting in too large or too small of a lesion. The aim is to develop a co-robotic catheter that uses novel robotic planning strategies to compensate for physiological movements of the heart and blood and that can be used while a patient undergoes MRI an imaging method used to take pictures of soft tissues in the body such as the heart. By combining state-of-the art robotics with high-resolution, real-time imaging, the co-robotic catheter could significantly increase the accuracy and repeatability of atrial fibrillation ablation procedures. M. Cenk Cavusoglu, Ph.D., Case Western Reserve University, Cleveland (funded by NIBIB).

  3. Novel Platform for Rapid Exploration of Robotic Ankle Exoskeleton Control:
    Wearable robots, such as powered braces for the lower extremities, can improve mobility for individuals with impaired strength and coordination due to aging, spinal cord injury, cerebral palsy, or stroke. Methods for establishing the best possible design of such a device for use in a specific patient population are lacking. This project aims to create an experimental platform for an assistive ankle robot to be used in patients recovering from stroke. The platform will allow investigators to test various robotic control methods and compare them based on measurable physiological outcomes. Results from these tests will provide evidence for making more effective, less expensive, and more manageable assistive technologies. Gregory S. Sawicki, Ph.D., North Carolina State University, Raleigh; Steven Collins, Ph.D., Carnegie Mellon University, Pittsburgh (co-funded by the National Institute of Nursing Research and NSF).

Source: National Institutes of Health (NIH), USA.

Also in the News:

New ultrasonic device to improve medical instrument hygiene - 16 Sep '15

Apple Watch - Set-up and First Impressions - 24 Apr '15

Scientists to develop wearable technology incl. smart trousers - 23 Feb '15

New: Mobile medical apps for continuous glucose monitoring - 23 Jan '15

Canadian Public Consultation re. Exposure to radiofrequency electromagnetic energy - 16 May '14

Touchscreen technology (NANA System) to help with nutrition for the elderly - 12 Nov '12

Non-invasive diagnostic for Adenovirus - 17 Feb '12

SpiNNaker Project: ARM processor chips to mimic human brain functions - 7 Jul '11

In the Old Testament Jacob dreamed of angels ascending and descending a fiery ladder (Genesis 28).

This is not medical, First Aid or other advice and is not to be used for diagnosis or treatment. Consult an expert in person. Care has been taken when compiling this page but accuracy cannot be guaranteed. This material is copyright.

IvyRose Holistic Health 2003-2017.